§29 softonic

“How to pimp high volume PHP websites”

27. September 2008, PHP conference Barcelona

By Jens Bierkandt v

About me

Jens Bierkandt

 Working with PHP since 2000

e From Germany, living in Spain, speaking English
 Always has some crazy projects in development
Senior PHP developer and working for Softonic

Contact: jens.bierkandt@softonic.com

Y,

softonic What is Softonic?

let's download!

Some details about Softonic

e Softonic is a software download portal founded in 1997

e |t offers reviews, ratings, user comparison of programs,
commenting functions and more

e It has its origins in Spain
* Now available in Spanish, English, German, French, Italian,
Portuguese and more to come

e We have over 10 Million page views per day
e More than 1.3 Million downloads a day
e More than 100.000 sessions at the same time

e Over 100 servers, over 100 employees, ~1 SPE (server per
employee)
e We love PHP

623 softonic Traffic rank from Softonic

Some statistics about Softonic

Reach |Hank Fage Views Range: | 74 | 1m |3m Bm | mas
Daily Traffic Rank Trend

softonic. comm download. corm fUuCows Corm
slashdot.org techcrunch. com
IDD I| T T T 1 I T 1]] I

1000 F - —

1DPDDD E 1 | 1 |- | -Hl_ﬂ"‘-"'--ﬂ-’dl_ﬂ-r _-\\.‘\l-_\-\-\-_l'__.I--'-..\-_'_\-\-\--\-\-\"-i_l-'-.-'_\-‘-\I\-\l_l\-"—E—I

CZ00E Alexa 2003 Sep 19

Introduction

What's the problem

* |Imagine you just launched a fresh application
 People actually love what you've created (finally!)
 They post it in their blogs

e |t gets picked up in online magazines,
newspapers, TV...

 And your server starts crying for help
e Just before being listed at Slashdot

* This session will give you an overview about how
you can keep your site running while getting
more traffic. Where possible we try to use PHP to
archive this goal

Topics today

What you will learn today

Error detection
 Application wide

e Server wide

Using PHP with accelerators
MySQL database replication
Caching systems
Webserver replication
Session sharing

High volume searches
Problems/Solutions

§Rsoftonic _ The usual steps to handle increasing traffic

How to handle more traffic

e Get webspace

e Get a webserver

 Install a PHP Accelerator

e Optimize SQL queries and PHP code

e Get an extra database server

e Cache DB results and HTML snippets
 Get server for static content (images)
e Get replication database

e Get more webservers

e Share sessions

e Use DB independent full text search

e Add servers where necessary @

More
traffic

Error detection

How to detect errors

“To fix an error, you need to know that you
have an error.”

We distinguish between:
 Application wide error detection
e Server wide error detection

Error detection inside the application

Application wide error detection

Log all PHP errors/warnings in a logfile. Not all
PHP errors and warnings show up while
developing software. We can also trace
trigger _error() events

Log slow SQL queries in a logfile. Some queries
are only slow when executed with special user
content

Log all SQL queries that fail. This gives you an
idea if you sanitize correctly user input or pass
correct values from your models

Why using a PHP debug console

Create a debug console

* Create debug output for every page
containing:
e Time needed by PHP to build the page
. Detalled MySQL debug:

Time needed for each SQL query
e The SQL query itself and the EXPLAIN of the SQL

query
e The result set

e Trace where the query has been launched in the
script

 Caching info, session variables, everything
you use

 Bottlenecks and bugs can be found easily
©

65 softonic Debug console examples

let's download!

Examples from Softonic

Cookie Group Values {Size: 3 KB)
SEC.
—\tma 0 "2EE53T481 1474188417 118828,
(size; 65 B) Query
__utmv 0 "256537 481 WindowsiBiroMextve S
(size: 47 B) PHP
softonic_de-al 0 = RE
: SeC.
(size: 149 By
ucountry 0 EL" Memcache
(size: 9 B) .
I}Ignu 0 "en_EN Memory usage
(size: 12 B)
. B
softonic_de- 0 = e o RS &
recent_searches
igize: 612 B)
1/31 READ: Main program information: file, extra, section and D o m Mermr
Time: Hs subdoemain infermation btes
Fows: 1
SOL RECORDSET EXPLAIN TRACE

Error detection on the server level

Server wide error detection

 Server health checks with Nagios
e Important to know if the servers work 24/7
e Be informed immediately if a server crashes
by SMS, E-Mail and alarm sounds
 Performance checks with Cacti

« Watching for example the load average,
outgoing traffic, queries per second etc.

e See trends

e Get an idea when to throw new servers to the
application (e.g. more database slaves...)

6% softonic

let's download!

Nagios

e Nagios is a host and service monitoring
program

|t can check all your services and alerts you if
something is not running

Laysut Mothad: Scaling factor: Contact Notifications All Contacts Notification dotail level for all contacts:
0.0 Last Upcatog i Jan 11 120300 CST 2008 ["All notifications
Draneing Ly Layer mode e Lisa- Logiielsigution Oldar Entios Frst:
EeAroniarcl Probis | Oinciuce Logodnas pogeange | 1 B =
Fedora Core & Praduction Servers & @ Eyciude o]
Printers - Prosont..
|Production Linux Servers K
: File: lusriiocalinagiosivarnagios. o
‘Sjvnm" popups:) ag agios.log
YUM OK: O/S s upto éato.
OK- 308, 756 MB (40%) Fros Momory, Used: 448 MB. Sharod: 0 MB,
. Buffors: 59 MB, Cached 274 MB
S warniNG 91-11-2008 Doliy-serviee: WARNING: muu—wwu 10,9386 - Used: B63M (84%) - Free:
Mamory Usnge 11:3:08 Dv-amai
01-11-2008 coify-service FTP OK- 10,753 socond responsthna on port 21 [220 ProFTPD 1.30
Ivamon com e - 11:34:31 ‘by-emai FTP Server) [208.64.135.202]]
01-11-2008 WARNING - 8/ 56 MB (1%) Froo Memory, Usod: 748 MB, Shared:
e Memory Usage warnanG §1ILE0S pagiosasmin Solfeesee: WARNING TR0 iy
‘avamon com ETP : S o data received from host
OK- 278,758 MB (38%) Frea Memory, Used: 480 MB. Shared: 0 MB.
it gt Bar m—”‘”- Buffers: 62 MB, Cached: 178 MB.
temptraxed Probe 2 Temp Warning: Altic = 398 F
4 01-11-2008
E iempirmxel Probel wARNING g1 fer BTF
W B C CRITICAL: mysg|_2008-01-02_0Tn00m Wednastay. sqLg2 i 100 o (98
k- sruzz;p\-\ = &h 11m 585 ok)
L - = CRITICAL 20080102 GTH00m Wedesdey k2 o o (4
v r
3 Qi? Pw""wll 2 govt iosadmin Dofv-service WARNING - 53/ 1010 MB (8%) Froe Momory, Used: §17 MB, Shared: 0
nerg M, Buffers: 138 MB, Cached: 840 MB
L) < far CHECK_NRPE: Socket tmecat after 10 seconds.
Tarean Nﬁlo on .
™ g o Physical m-ﬂ-ﬁm potfy-service- WARNING: physical memory: Totak 0.988G - Used: 575M (56%) - Free:
N ot i : o Memory Usage WARNING 1g5eps DISRSRITIN by grgy 348 (34%) > warring
e WARNING - 73, 758 MB (8%6) Froo Momory, Used: 863 MB, Shared: 0
] = Mamory Usson wrRinG (E705 naamssemn B B o 4TI MB
lemptraxe poed BRI S1ea™™ nogosnsmio SBESENER. rung ok Probe 4 =235 F
nmu.-.cm:w org tomptraxet Prote 2 WARNING ?&;&u}m ragipsngmin COMESONVER: yors warming: Attic = 30.7 F
e otes RO SEIIE08 naciosnmin SHCERED: 1o Ok:Pota =28 F
o1-11-2008 <
iomptraed Probei WARNING o fm BLeF Y
tompaxet Probe 2 -"l‘,;];'g?'” pasisadin SOINSENES: (o code of 127 outof bounds - pign may ba missig) X

http://www.nagios.org/ ()

Cacti overview

Cacti

Cacti enables you to see and analyse your
server performance.

Works with SNMP and is highly configurable
with plugins

Most important things to watch:

 Load average

 Qutgoing traffic

e Memory usage

e MySQL queries per second

« MySQL replication lag

« Disk /0O

http://www.cacti.net/

629 softonic Cacti examples

Cacti screenshots

w

E SNMP - Load Average MySQL - teMysQL - Old Command Stats

o

= 5.0 10

=1

= 48

w

= =0

5 20

i

w 1.0

Wi

Wi

El 0.0

e Thu 20: 00 Fri 00: 08 Fri 84:00 Fri 0Z: 08 Fri 12:08 Fri 16: 008 : Lo .

= From 2008/09/25 19:09:22 To 2008/09/26 19:09:22 hu 26: 00 Fri ©0: 08 Fri 94:00 Fri 08: 08 Fri 16:80

From 2008/05/25 15:05:40 To 2008/059/26 19:05:40

01 Minute Average Current: 0.35

O 5 Minute Average Current: 0.14 O select Current: 2.30 Average: 1.25 Min: 275.37 m Max: 9,13

M 15 Minute Average Current: 0.07 M Change_DE Current: 40.18 m Average: 47. 71 m Min: 5.67 m Max: 1.16

W Total W Delete Current: 414.83 m Average: 395.88 m Min: 226.84 m Max: 1.48
O Insert Current: 331.03 m Average: 302.56 m Min: 219.40 m Max: 1.19
B Update Current: 112.84 m Average: 31.40m Min: 3.30 m Max: 4,61

Apache - Apache Statistics - Thread Scoreboard

=101

40
Ll
= 20
i
= 20
'_

1@

@

Thu 20:80 Fri 80: 00 Fri 84:00 Fri 02:00 Fri 12: 00 Fri 1&:80

From 2008/09/25 19:07:49 To 2008/09/26 19:07:48

W Waiting Current: 7.97 Average: 7.88 MaxLmum: 10,98
W Keepalive Current: 1.03 Average: 1.45 Maximum: 31.79
B Reading Request Current: [c] Average: 0.00 MaxLmum: 0.00
O Sending Reply Current 1.01 Average: 1.18 Maximum; &. 95
W Starting Up Current: 0. 00 Average: 0.00 MaxLmum: 0,00
O DNS Lookup Current: 0.00 Average: 0.00 MasxLmum: 0.00
O Closing Connection Current: 0. 00 Average: 100.84 m Maximum: 10,96
O Logging Current: [c] Average: 0.00 MaxLmum: 0.00
O Graceful Finishing Current: .00 Average: 0.00 Maximum; .00
W Idle Cleanup Current: 0. 00 Average: 0.00 MaxLmum: 0. 00

65 softonic Caching of PHP code

PHP accelerators

e Op-code caches speed up PHP applications by
parsing and tokenizing PHP scripts once, and
executing them faster for every subsequent
request

e For example APC, eaccelerator and XCache

e Easy to install. They normally work completely
transparent for the developer

e Must have, use it as first aid for slow

applications
Requests per Secand Single Request (millizeconds) Mermary (Maxirmum, MB) Mernary (Minirnum, MEB)
Mane 10,41 Q6,08 24 24
edcceleratar a1.26 31,99 23 18
“Zache 30,28 23,02 29 19
AP 2045 22,24 21 21

Source: http://2bits.com/articles/benchmarking-drupal-with-php-op-code-caches-apc-eaccelerator-and-xcache-compared.html

©

Alternative PHP Cache

Caches compiled PHP scripts. Example: User A
requests a script. It gets compiled and saved by
APC. User B requests this file again and
retrieves it directly from the cache

APC is also a general purpose PHP shared
memory store. You can put e.g. database results
and HTML snippets to the APC cache and
retrieve them later without bothering the
database

Saves data locally, in contrast to memcached

Much faster than distributed caches over several
servers

Y,

softonic

let's download!

MySQL replication

MySQL replication basics

A typical website normally has lots of reads from
the database and a few writes

 All writes go to the master, all reads to the

slaves

Key

Client

Reads

40

Writes

Client Data
<

Replication
—_—

Replication

Reads Reads Reads
Writes

Source: MySQL website

Web Client

Web Client

W

{ Load Balancer D

| I

Clients

()

MySQL replication

How does a SELECT work

User requests a page

The PHP script decides which DB server to
connect to for reading. This is based on the
server weight and the server is checked for
availability

All SELECT queries are then executed on the
same DB server until the script ends

This functionality needs a well designhed
database class to make the calls transparent for
the rest of the application

MySQL replication

How does a WRITE work

If a write query is needed, the database
class automatically connects to the
master database server

The query Is executed and the MySQL
master automatically distributes the data
to the replication slaves

69 softonic Conclusion for MySQL replication

Conclusion for MySQL replication

e MySQL replication is pretty easy to set up
 Big performance boost for web applications

e Problems:

e More hardware is needed. More hardware means more
hardware failures

 Avreplication lag can occur. Replication slaves can’t
catch the new data from the master instantly. They
always need more or less time, depending on the load
of the servers and the network. Therefore a SELECT
from a replication slave is possibly getting old data
before the slave gets updated information from the
master

e MySQL provides also a SQL query cache which is
disabled by default

Object caching systems

Why using a server cache

Generally it Is not necessary to always
regenerate a website completely when a
user visits it

A better approach is to execute the script
once, do the selects from the DB once,
create the HTML output and then save it
on the server for the next user

It's possible to cache whole pages, HTML
snippets or data (e.g. DB results)

Implementation in the application can be
complex

Memcached installation

Using memcached

Best practise is to install memcached on every
webserver you have (Webserver is CPU
Intensive, memcached is memory intensive)

A PHP extension for memcached exists and
needs to be installed and configured

When you launch e.g. a database query, always
check in advance if there is a cached version
available

This drops the load of the DB servers
significantly

Be sure that the webserver has enough memory
to always serve the cache requests from there

&

Memcached In action

How does memcached work

The memcached client knows about all available
memcached servers

When a user first requests a webpage from one
of your webservers, the data is received from
the database and send with a hash by the client
to memcached

If another user requests the same data, the
memcached client retrieves the data from the
correct memcached server

If one memcached dies, the requests are
remapped to the other available servers and
stored/received from them

Problems when using a cache

Caching problems

If the content of the database changes, a
manual deletion of the cache is necessary. If this
IS not implemented very well, the user might
see old data

If for any reason the memcache daemons need
to be restarted or the cache needs to be
completely deleted, you will see instantly a very
high load on the database servers. This load can
exceed the capacity of the servers and your
application fails to start. In this case it is
necessary to prefill the cache slowly before
going online again

69 softonic Comparison of caching systems

Caching benchmarks

120000

100000

80000
Gets per
second 60000
M 12 Bytes
M 8 Kilobyte
40000
20000

APC Cache Memcached MySQL Table
Array Cache File Cache MySQL Cache

Benchmark tests with 10.000 cycles

Webserver replication

Webserver replication basics

e Requests are distributed to different
servers

 Several possibilities
e Round Robin (DNS based)
e |Load Balancer (hardware/software based)

£ 2
example.tid? 192.168.1.3
192.168.1.1 192.168.1.2
(_DNS Server) (Load Balancer)
Request 1 Request 2
¥ v
(Server1) (‘Server 2) (Server 1) (Server 2)

192.168.1.1 192.168.1.2 192.168.1.1 192.168.1.2

Round Robin Load Balancer @

Problems with webserver replication

Webserver replication issues

e The session data is normally saved locally. What
happens, if a user gets data from his first
request from server A and with the second
request from server B?

e A separate session handling must be used
 Distribution needed if a user uploads content

that is normally not stored in the database (e.q.

Images)

 Dedicated server for content uploaded by users
 Failover needed if a server crashes

e (Can be handled with a load balancer

(®)

Session basics

Session basics

e A session is used when you store e.g. temporary
data of a user on the server side. The session is
identified by a unique string in a cookie or URL
passed from the client to the server

e |In PHP session data is by default stored in the
file system

e (Can be customized in PHP to store session data
e.g. in a database, xml-file... with the function
call session _set save handl er ()

Session basics

Sharing sessions

Using the local file system for sessions is
not useful when having multiple
webservers

Using a shared file for saving sessions is
not recommended because of
performance issues

Using a database for session storage puts
even more load on the database servers

Solution: Sharedance

623 softonic Introduction to Sharedance

Sharedance

e Sharedance is a distributed object
cache

A distributed cache spreads it's data
across multiple machines

 Great for saving sessions webserver
independent

 Pretty much like memcached

63 softonic Comparison of memcached and Sharedance

Sharedance versus memcached

e Sharedance can save session data also to the
hard disk, memcached uses only memory

 0Old session data could be thrown out if the
cache gets full in memcached. In Sharedance it
IS kept until it gets deleted manually (session
destroy) or by a given expiry time (GC)

« |If a memcached server goes down, the cache
data is lost on this server

e Both use libevent, both are daemons

« Sharedance has some more configuration
parameters

Why search

Searching basics

Searching and finding content on a website is
essential for internet users

Most websites offer the possibility to browse
through their data (e.qg. products, reviews, text
In general...)

Depending on the amount of the users and data,
this can be quite challenging for a database

We need a full text search tool that's fast and
does not put more load on the DB

629 softonic Searching a website using Sphinx

Sphinx

e Sphinx is a full-text search engine

 Sphinx was especially desighed to
iIntegrate well with SQL databases and
scripting languages

 High indexing speed (up to 10 MB/sec on
modern CPUSs)

e High search speed (average query is
under 0.1 sec on 2-4 GB text collections)

 High scalability (up to 100 GB of text,
up to 100 M documents on a single CPU)

63 softonic Comparison of different benchmarks

Search engine benchmarks

Average query time (ms)
1800

1600

1400

1200

O MysaL
B Lucene
] Sphinx

1000

800

600

400

200

93

time(ms)

Source: http://www.mysqglperformanceblog.com/files/presentations/EuroOSCON2006-High-Performance-FullText-Search.pdf

S

63 softonic Linking everything together

The big picture

Clients

i'i'

Load Balancer

ached 3

@ cphinx)

L siave 2 =

(Sharedance)

0L slave 1

More things to optimize

What's left

Create a filesystem inside the server memory
(tmpfs)

Create intermediate data with cronjobs

Use extra servers for static content (e.g. images,
CSS files...)

Tweak my.cnf, httpd.conf and kernel parameters

Add 'noatime' in /etc/fstab on your web and data
drives to prevent disk writes on every read

Benchmarking. All tools mentioned could be
replaced by similar programs

And much more...

Problems when using multiple servers

Downside

More servers mean also more hardware
failure

Costs quite some money to buy,
configure and maintain

Everything should be set up redundant,
avoiding a single point of failure

(®)

Hasta la vista!

That's it!

e Questions?

* You can get these slide from here:
http://www.bierkandt.org/php barcelona2008.pdf

e The video will be online soon

e Thank you for joining and hope to see
you again! ;-)

e Contact: jens.bierkandt@softonic.com

http://www.bierkandt.org/php_barcelona2008.pdf

	Start
	About me
	What is Softonic
	Traffic rank from Softonic
	Introduction
	Topics today
	How to handle more traffic
	Error detection
	Application wide error detection
	Create a debug console
	Debug console examples
	Server wide error detection
	Nagios
	Cacti
	Cacti screenshots
	PHP accelerators
	Alternative PHP Cache (APC)
	MySQL replication basics
	How does a SELECT work
	How does a WRITE work
	Conclusion for MySQL replication
	Why using a server cache
	Using memcached
	How does memcached work
	Caching problems
	Caching benchmarks
	Webserver replication basics
	Webserver replication issues
	Session basics
	Sharing sessions
	Sharedance
	Sharedance versus memcached
	Searching basics
	Sphinx
	Search engine benchmarks
	The big picture
	What's left
	Downside
	That’s it!

