
 1

“How to pimp high volume PHP websites”

By Jens Bierkandt

27. September 2008, PHP conference Barcelona

 2

Jens Bierkandt
• Working with PHP since 2000
• From Germany, living in Spain, speaking English
• Always has some crazy projects in development
• Senior PHP developer and working for Softonic

• Contact: jens.bierkandt@softonic.com

About me

 3

Some details about Softonic
• Softonic is a software download portal founded in 1997
• It offers reviews, ratings, user comparison of programs,

commenting functions and more
• It has its origins in Spain
• Now available in Spanish, English, German, French, Italian,

Portuguese and more to come
• We have over 10 Million page views per day
• More than 1.3 Million downloads a day
• More than 100.000 sessions at the same time
• Over 100 servers, over 100 employees, ~1 SPE (server per

employee)
• We love PHP

What is Softonic?

 4

Some statistics about Softonic

Traffic rank from Softonic

 5

What’s the problem
• Imagine you just launched a fresh application
• People actually love what you’ve created (finally!)
• They post it in their blogs
• It gets picked up in online magazines,

newspapers, TV...
• And your server starts crying for help
• Just before being listed at Slashdot

• This session will give you an overview about how
you can keep your site running while getting
more traffic. Where possible we try to use PHP to
archive this goal

Introduction

 6

What you will learn today
• Error detection

• Application wide
• Server wide

• Using PHP with accelerators
• MySQL database replication
• Caching systems
• Webserver replication
• Session sharing
• High volume searches
• Problems/Solutions

Topics today

 7

How to handle more traffic
• Get webspace
• Get a webserver
• Install a PHP Accelerator
• Optimize SQL queries and PHP code
• Get an extra database server
• Cache DB results and HTML snippets
• Get server for static content (images)
• Get replication database
• Get more webservers
• Share sessions
• Use DB independent full text search
• Add servers where necessary

The usual steps to handle increasing traffic

More
traffic

 8

How to detect errors

“To fix an error, you need to know that you
have an error.”

We distinguish between:
• Application wide error detection
• Server wide error detection

Error detection

 9

Application wide error detection
• Log all PHP errors/warnings in a logfile. Not all

PHP errors and warnings show up while
developing software. We can also trace
trigger_error() events

• Log slow SQL queries in a logfile. Some queries
are only slow when executed with special user
content

• Log all SQL queries that fail. This gives you an
idea if you sanitize correctly user input or pass
correct values from your models

Error detection inside the application

 10

Create a debug console

• Create debug output for every page
containing:
• Time needed by PHP to build the page
• Detailed MySQL debug:

• Time needed for each SQL query
• The SQL query itself and the EXPLAIN of the SQL

query
• The result set
• Trace where the query has been launched in the

script

• Caching info, session variables, everything
you use

• Bottlenecks and bugs can be found easily

Why using a PHP debug console

 11

Examples from Softonic

Debug console examples

 12

Server wide error detection

• Server health checks with Nagios
• Important to know if the servers work 24/7
• Be informed immediately if a server crashes

by SMS, E-Mail and alarm sounds

• Performance checks with Cacti
• Watching for example the load average,

outgoing traffic, queries per second etc.
• See trends
• Get an idea when to throw new servers to the

application (e.g. more database slaves…)

Error detection on the server level

 13

Nagios
• Nagios is a host and service monitoring

program.
• It can check all your services and alerts you if

something is not running.

Nagios

http://www.nagios.org/

 14

Cacti
• Cacti enables you to see and analyse your

server performance.
• Works with SNMP and is highly configurable

with plugins
• Most important things to watch:

• Load average
• Outgoing traffic
• Memory usage
• MySQL queries per second
• MySQL replication lag
• Disk I/O

Cacti overview

 http://www.cacti.net/

 15

Cacti screenshots

Cacti examples

 16

PHP accelerators
• Op-code caches speed up PHP applications by

parsing and tokenizing PHP scripts once, and
executing them faster for every subsequent
request

• For example APC, eaccelerator and XCache
• Easy to install. They normally work completely

transparent for the developer
• Must have, use it as first aid for slow

applications

Caching of PHP code

Source: http://2bits.com/articles/benchmarking-drupal-with-php-op-code-caches-apc-eaccelerator-and-xcache-compared.html

 17

Alternative PHP Cache
• Caches compiled PHP scripts. Example: User A

requests a script. It gets compiled and saved by
APC. User B requests this file again and
retrieves it directly from the cache

• APC is also a general purpose PHP shared
memory store. You can put e.g. database results
and HTML snippets to the APC cache and
retrieve them later without bothering the
database

• Saves data locally, in contrast to memcached
• Much faster than distributed caches over several

servers

APC

 18

MySQL replication basics
• A typical website normally has lots of reads from

the database and a few writes
• All writes go to the master, all reads to the

slaves

MySQL replication

Source: MySQL website

 19

How does a SELECT work

• User requests a page
• The PHP script decides which DB server to

connect to for reading. This is based on the
server weight and the server is checked for
availability

• All SELECT queries are then executed on the
same DB server until the script ends

• This functionality needs a well designed
database class to make the calls transparent for
the rest of the application

MySQL replication

 20

How does a WRITE work

• If a write query is needed, the database
class automatically connects to the
master database server

• The query is executed and the MySQL
master automatically distributes the data
to the replication slaves

MySQL replication

 21

Conclusion for MySQL replication

• MySQL replication is pretty easy to set up
• Big performance boost for web applications

• Problems:
• More hardware is needed. More hardware means more

hardware failures

• A replication lag can occur. Replication slaves can’t
catch the new data from the master instantly. They
always need more or less time, depending on the load
of the servers and the network. Therefore a SELECT
from a replication slave is possibly getting old data
before the slave gets updated information from the
master

• MySQL provides also a SQL query cache which is
disabled by default

Conclusion for MySQL replication

 22

Why using a server cache

• Generally it is not necessary to always
regenerate a website completely when a
user visits it

• A better approach is to execute the script
once, do the selects from the DB once,
create the HTML output and then save it
on the server for the next user

• It’s possible to cache whole pages, HTML
snippets or data (e.g. DB results)

• Implementation in the application can be
complex

Object caching systems

 23

Using memcached

• Best practise is to install memcached on every
webserver you have (Webserver is CPU
intensive, memcached is memory intensive)

• A PHP extension for memcached exists and
needs to be installed and configured

• When you launch e.g. a database query, always
check in advance if there is a cached version
available

• This drops the load of the DB servers
significantly

• Be sure that the webserver has enough memory
to always serve the cache requests from there

Memcached installation

 24

How does memcached work

• The memcached client knows about all available
memcached servers

• When a user first requests a webpage from one
of your webservers, the data is received from
the database and send with a hash by the client
to memcached

• If another user requests the same data, the
memcached client retrieves the data from the
correct memcached server

• If one memcached dies, the requests are
remapped to the other available servers and
stored/received from them

Memcached in action

 25

Caching problems

• If the content of the database changes, a
manual deletion of the cache is necessary. If this
is not implemented very well, the user might
see old data

• If for any reason the memcache daemons need
to be restarted or the cache needs to be
completely deleted, you will see instantly a very
high load on the database servers. This load can
exceed the capacity of the servers and your
application fails to start. In this case it is
necessary to prefill the cache slowly before
going online again

Problems when using a cache

 26

Caching benchmarks

Comparison of caching systems

Array Cache
APC Cache

File Cache
Memcached

MySQL Cache
MySQL Table

0

20000

40000

60000

80000

100000

120000

12 Bytes
8 Kilobyte

Gets per
second

Benchmark tests with 10.000 cycles

 27

Webserver replication basics

• Requests are distributed to different
servers

• Several possibilities
• Round Robin (DNS based)
• Load Balancer (hardware/software based)

Webserver replication

Round Robin Load Balancer

 28

Webserver replication issues

• The session data is normally saved locally. What
happens, if a user gets data from his first
request from server A and with the second
request from server B?
• A separate session handling must be used

• Distribution needed if a user uploads content
that is normally not stored in the database (e.g.
images)
• Dedicated server for content uploaded by users

• Failover needed if a server crashes
• Can be handled with a load balancer

Problems with webserver replication

 29

Session basics

• A session is used when you store e.g. temporary
data of a user on the server side. The session is
identified by a unique string in a cookie or URL
passed from the client to the server

• In PHP session data is by default stored in the
file system

• Can be customized in PHP to store session data
e.g. in a database, xml-file… with the function
call session_set_save_handler()

Session basics

 30

Sharing sessions

• Using the local file system for sessions is
not useful when having multiple
webservers

• Using a shared file for saving sessions is
not recommended because of
performance issues

• Using a database for session storage puts
even more load on the database servers

• Solution: Sharedance

Session basics

 31

Sharedance

• Sharedance is a distributed object
cache

• A distributed cache spreads it's data
across multiple machines

• Great for saving sessions webserver
independent

• Pretty much like memcached

Introduction to Sharedance

 32

Sharedance versus memcached
● Sharedance can save session data also to the

hard disk, memcached uses only memory
● Old session data could be thrown out if the

cache gets full in memcached. In Sharedance it
is kept until it gets deleted manually (session
destroy) or by a given expiry time (GC)

● If a memcached server goes down, the cache
data is lost on this server

● Both use libevent, both are daemons
● Sharedance has some more configuration

parameters

Comparison of memcached and Sharedance

 33

Searching basics

● Searching and finding content on a website is
essential for internet users

● Most websites offer the possibility to browse
through their data (e.g. products, reviews, text
in general…)

● Depending on the amount of the users and data,
this can be quite challenging for a database

● We need a full text search tool that's fast and
does not put more load on the DB

Why search

 34

Sphinx

• Sphinx is a full-text search engine
• Sphinx was especially designed to

integrate well with SQL databases and
scripting languages

• High indexing speed (up to 10 MB/sec on
modern CPUs)

• High search speed (average query is
under 0.1 sec on 2-4 GB text collections)

• High scalability (up to 100 GB of text,
up to 100 M documents on a single CPU)

Searching a website using Sphinx

 35

Search engine benchmarks

Comparison of different benchmarks

Source: http://www.mysqlperformanceblog.com/files/presentations/EuroOSCON2006-High-Performance-FullText-Search.pdf

 36

The big picture

Linking everything together

 37

What's left

• Create a filesystem inside the server memory
(tmpfs)

• Create intermediate data with cronjobs
• Use extra servers for static content (e.g. images,

CSS files...)
• Tweak my.cnf, httpd.conf and kernel parameters
• Add 'noatime' in /etc/fstab on your web and data

drives to prevent disk writes on every read
• Benchmarking. All tools mentioned could be

replaced by similar programs

• And much more...

More things to optimize

 38

Downside

• More servers mean also more hardware
failure

• Costs quite some money to buy,
configure and maintain

• Everything should be set up redundant,
avoiding a single point of failure

Problems when using multiple servers

 39

That’s it!

Hasta la vista!

• Questions?
• You can get these slide from here:

http://www.bierkandt.org/php_barcelona2008.pdf

• The video will be online soon
• Thank you for joining and hope to see

you again! ;-)

• Contact: jens.bierkandt@softonic.com

http://www.bierkandt.org/php_barcelona2008.pdf

	Start
	About me
	What is Softonic
	Traffic rank from Softonic
	Introduction
	Topics today
	How to handle more traffic
	Error detection
	Application wide error detection
	Create a debug console
	Debug console examples
	Server wide error detection
	Nagios
	Cacti
	Cacti screenshots
	PHP accelerators
	Alternative PHP Cache (APC)
	MySQL replication basics
	How does a SELECT work
	How does a WRITE work
	Conclusion for MySQL replication
	Why using a server cache
	Using memcached
	How does memcached work
	Caching problems
	Caching benchmarks
	Webserver replication basics
	Webserver replication issues
	Session basics
	Sharing sessions
	Sharedance
	Sharedance versus memcached
	Searching basics
	Sphinx
	Search engine benchmarks
	The big picture
	What's left
	Downside
	That’s it!

